Прикладное программное обеспечение цифрового USB прибора для измерения вольт-амперных характеристик.

Д.А. Коновалов, н.с. лаб. ФПС КФТИ ФИЦ КазНЦ РАН

В состав цифрового USB прибора для измерения вольт-амперных характеристик (далее USB прибор) входит прикладное программное обеспечение (ППО). ППО запускается на рабочей станции под управлением операционной системы Windows.ППО предназначено для реализации функций:

- управления и контроля состояния USB прибора;
- сбора, окончательной обработки, визуализации и сохранения результатов измерения USB прибором.

ППО реализуется как программа на графическом языке программирования «G» фирмы National Instruments. Для работы программы необходимо наличие рабочей станции с установленной на ней средой для выполнения кода LabVIEW 2012 SP1 Runtime.

ППО представлено скомпилированным исполняемым .exe файлом.

Оглавление

1	Лог	ичесн	кая структура	.2
2	Орг	аниз	ация информационного обмена с USB прибором	.2
	2.1	Mo	дуль ЦАП	.2
2.1.1			Команды модуля ЦАП	.3
	2.2	Mo	дуль АЦП	.3
	2.2.	.1	Команды модуля АЦП	.3
	2.3	Опт	ронные ключи	.4
~	2.3.1		Команды управления оптронными ключами	.4
3	Алг	орити	м исполнения программы ППО	.4
	3.1	Алго	оритм калибровки:	.4
	3.2	Алго	оритм работы программного блока VAC	.5
	3.2.	.1	Формат файла с результатами измерений	.6
	3.2.	.2	Сохранение архивного снимка	.6
	3.3	Алго	оритм работы программного блока Service	.8
	3.4	Алго	оритм работы программного блока Camera	.9

1 Логическая структура

Структурно ППО состоит из трех крупных блоков, оформленных на виртуальной лицевой панели прибора в виде отдельных вкладок, имеющих интуитивно понятный графический интерфейс:

- VAC измерение ВАХ образца, подключенного к измерительным клеммам;
- Camera работа с USB-камерой. В составе расширенной версии ППО VAC-2_3-Camera.
- Calibrate калибровка USB прибора;
- Service графический стенд, показывающий упрощенную принципиальную схему прибора, и позволяющий управлять его отдельными модулями. Используется для отладки и для обучения работе с устройствами сбора данных на базе ЦАП и АЦП.

2 Организация информационного обмена с USB прибором

ППО взаимодействует с USB прибором по последовательному интерфейсу по протоколу RS-232. Скорость передачи данных 115200 бит/с без контроля четности, 8 бит данных, 1 стоп-бит. Интерпретатор команд интерфейса связи реализован в виде текстового консольного интерфейса. Полный список команд приведён в документе «Специальное программное обеспечение цифрового USB прибора для измерения вольт-амперных характеристик».

Функционально USB прибор разделен на несколько модулей, тремя из которых ППО может управлять при помощи команд.

2.1 Модуль ЦАП

Модуль ЦАП формирует биполярное напряжение. Структурно модуль ЦАП состоит из четырех независимых каналов (А, В, С, D) формирующих однополярные напряжения и сумматоравычитателя напряжений на базе операционного усилителя (Рис. 1). Вес выходных напряжений каналов В и D (U_B и U_D) при суммировании/вычитании составляет 1/100 от веса каналов А и С (U_A и U_c). Комбинируя выходные однополярные напряжения 4-х каналов ЦАП, имеющих дискретность 12 бит, можно сформировать биполярное напряжение U с дискретностью ~ 19.5 бит.

Рис. 1. Функциональная схема формирования управляющего напряжения

Алгоритм вычисления кодов для загрузки в регистры 4-х каналов ЦАП:

- Если U должно быть >0, значения регистров каналов A, B = 0;
- Если U должно быть <0, значения регистров каналов C, D = 0;
- Значения регистров 2-х значащих каналов вычисляются с помощью операции деления с остатком:

Код (A | C) = 40* |U| div 0.04; Код (B | D) = 1E5* |U| mod 0.04.

2.1.1 Команды модуля ЦАП

- DAC n DDDD для канала ЦАП n задает значение DDDD (n: 0-3, DDDD: 0-4095);
- DAC_CLR загрузка нулевого кода в регистры всех каналов ЦАП.

2.2 Модуль АЦП

Модуль АЦП содержит 4-х канальный 24-битный дельта-сигма преобразователь с масштабным усилителем и с двумя встроенными программируемыми источниками тока.

На Рис. 2 представлена упрощенная схема аналогового коммутатора микросхемы АЦП. На ней приведены только те ключи и источники сигналов, которыми ППО может управлять с помощью команд.

Рис. 2. Упрощенная схема аналогового коммутатора АЦП

2.2.1 Команды модуля АЦП

- **ADC_CONFIG?** выводит значения 4-х регистров конфигурации АЦП в шестнадцатеричном формате;
- ADC_CONFIG XX XX XX XX задает значения 4-х регистров конфигурации АЦП, XX — значение соответствующего регистра в шестнадцатеричном формате;
- GAIN n задает коэффициент усиления масштабного усилителя PGA (n: 0-7, коэффициент усиления = 2<<n (1, 2, 4, 8, 16, 32, 64, 128);
- **MUX n** конфигурирует входной коммутатор АЦП (**n**: 0-5, где 0: AIN0_AIN1, 1: AIN0_AIN2, 2: AIN0_AIN3, 3: AIN1_AIN2, 4: AIN1_AIN3, 5: AIN2_AIN3);
- **IDAC n** конфигурирует встроенные в АЦП источники тока (**n**: 0-7, где 0: Off, 1: 10uA, 2: 50uA, 3: 100uA, 4: 250uA, 5: 500uA, 6: 1mA, 7: 1.5mA);
- I1MUX n управляет подключением встроенного в АЦП источника тока 1 к входу AIN2 (n: 0-1, где 0: Off, 1: AIN2);
- I2MUX n управляет подключением встроенного в АЦП источника тока 2 к входу AIN2 (n: 0-1, где 0: Off, 1: AIN2);
- **DATA?** ждет окончания преобразования АЦП и выводит: результат в мВ с точностью 6 знаков после запятой; отсчет АЦП в шестнадцатеричном формате; значение коэффициента

усиления. Разделитель – символ «возврат каретки» (ответ: data_mV<CR> data_hex<CR> gain<CR>);

- **UI? n m** макрокоманда (**n** GainU:0-7, **m** GainI:0-7). Выполняет последовательность действий по измерению напряжения и тока (ответ: Udata_mV<CR> Idata_mV<CR>).
- **STREAM** в цикле ждет окончания преобразования АЦП и выводит результат в мВ с точностью 6 знаков после запятой.

2.3 Оптронные ключи

Оптронные ключи служат для подключения выхода модуля ЦАП и выхода ИТУН к измерительным цепям.

2.3.1 Команды управления оптронными ключами

• **OUT n** – **n**: 0-1, где 0: Off, 1:Current, 2:Voltage.

3 Алгоритм исполнения программы ППО

При запуске исполняемого файла VAC-2_1.exe происходит инициализация графического интерфейса и последовательного порта для связи с прибором. После этого происходит переключение на вкладку **Calibrate** и управление передается программному блоку калибровки (Рис. 3). Калибровка запускается автоматически и длится несколько секунд. По окончанию калибровки управление передается на вкладку программного блока **VAC** (Рис. 4). Вкладка **Service** (Рис. 5) активируется кликом. Вкладка **Camera** (Рис. 6) для позиционирования зондов активируется кликом. Также на неё передается управления после окончания цикла измерений с вкладки **VAC** для сохранения архивного снимка. При нажатии на экранную кнопку **EXIT** работа активного программного блока прерывается, выход ИТУН отключается от измерительных клемм, все каналы ЦАП обнуляются, АЦП конфигурируется в состояние по умолчанию, последовательный порт освобождается и программа завершает свою работу.

3.1 Алгоритм калибровки:

- выходы модуля ЦАП и ИТУН отключаются от измерительных клемм (команда: OUT 0);
- калибровка каналов измерения напряжения и тока:
 - макрокомандой UI? n m в цикле производятся измерения с накоплением для каждого значения коэффициента усиления ;
 - о формируются массивы поправок Ar_U_0 и Ar_I_0.
- определение значения измерительного сопротивления:
 - о входной коммутатор микросхемы АЦП конфигурируется в состояние AIN2-AIN3
 - встроенные программируемые источники тока микросхемы АЦП программируются на значение тока 0.5 mA (IDAC 5);
 - встроенные программируемые источники тока микросхемы АЦП подключаются к входу АЦП AIN2 (I1MUX 1, I2MUX 1);
 - производится измерение с накоплением и с учетом калибровки. Полученное значение имеет размерность mV/mA, т.е. Ом (в цикле DATA?);

	"0"		Standart deviation				
GAIN	mean U	mean I	U		mean mV/mA		_
1	0.0042236	-0.008838	0.00942668	0.0101401	9.234998	0.000288	standard deviatio
2	0.0063599	-0.01427	0.00444123	0.00727304			
4	0.007251	-0.0136534	0.00383242	0.00343604	9.213905 mV/mA		
8	0.0040435	-0.0171416	0.00256287	0.00156818			
16	0.0012193	-0.0185881	0.00115789	0.00109081			
32	9.3E-5	-0.0214028	0.00053617	0.00094142			
64	-0.0005467	-0.0215472	0.00025593	0.00037506			
128	-8.4E-6	-0.0211074	0.00029864	0.00027928			

Рис. 3. Вкладка программного блока Calibrate.

3.2 Алгоритм работы программного блока VAC

На вкладке **VAC** (Рис. 4) расположены восемь элементов управления и три элемента индикации. Элементы управления:

- поле Режим выпадающий список: Гальваностат, Потенциостат;
- поле I max, mA ;
- поле Step I, mA отображается только в режиме Гальваностат;
- поле U max, V отображается только в режиме Потенциостат;
- поле Step U, V отображается только в режиме Потенциостат;
- экранная кнопка **START**;
- два поля блока Диапазоны (U, I) задают коэффициенты усиления масштабного усилителя микросхемы АЦП для каналов измерения напряжения и тока.

Нажатие кнопки **START** запускает процесс измерения:

- В режиме Гальваностат:
 - о выход ИТУН подключается к измерительным клеммам;
 - задается ток (+ I max);
 - о в цикле:
 - производится измерение значений тока, протекающего через образец, и напряжения, падающего на образце;
 - заданный ток уменьшается на величину (Step I).
 - о условие завершения цикла:
 - заданный ток достиг значения (- I max), или
 - напряжение, падающее на образце, меньше или равно (- 20 В), или
 - нажата кнопка EXIT .
 - по завершению цикла выход ИТУН отключается от измерительных клемм, все каналы ЦАП обнуляются, АЦП конфигурируется в состояние по умолчанию, оператору предлагается сохранить результат измерений.

- если результаты были сохранены, происходит переключение на вкладку Camera (только для расширенной версии ППО – VAC-2_3-Camera).
- В режиме Потенциостат:
 - о производится проверка условий + I (+U max) ≤ + I max, I (- U max) ≥ I max;
 - о при необходимости значения +U max и U max корректируются;
 - о выход модуля ЦАП подключается к измерительным клеммам;
 - о задается напряжение (+ U max);
 - о в цикле:
 - производится измерение значений тока, протекающего через образец, и напряжения, падающего на образце;
 - заданное напряжение уменьшается на величину (*Step U*).
 - о условие завершения цикла:
 - заданное напряжение достигло значения (- U max), или
 - нажата кнопка EXIT.
 - по завершению цикла выход модуля ЦАП отключается от измерительных клемм, все каналы ЦАП обнуляются, АЦП конфигурируется в состояние по умолчанию, оператору предлагается сохранить результат измерений.
 - если результаты были сохранены, происходит переключение на вкладку Camera (только для расширенной версии ППО – VAC-2_3-Camera).

Элементы индикации:

- окно XY Graph динамически строит вольт-амперную характеристику в процессе измерительного цикла.
- два цифровых индикатора U, mV и I, mA, расположенные поверх окна XY Graph отображают значения тока и напряжения, измеренные в текущем шаге измерительного цикла;

3.2.1 Формат файла с результатами измерений

Результаты сохраняются в текстовый файл в виде таблицы из двух столбцов, разделенных символом табуляции:

U, mV I, mA 5229.966927 0.978287 5226.267585 0.968482 5223.001960 0.958721 ...

3.2.2 Сохранение архивного снимка

(только для расширенной версии ППО – VAC-2_3-Camera)

После сохранения результатов измерений происходит переключение на вкладку **Camera** (Рис.6). Поле Path будет содержать путь, выбранный при сохранении результата. Поле File будет содержать имя файла, выбранное при сохранении результата. Сохранение графического файла с расширением .png произойдет после нажатия на экранную кнопку Снимок.

a)

Рис. 4. Вкладка программного блока VAC. (а) – режим Гальваностат, (б) – режим Потенциостат

3.3 Алгоритм работы программного блока Service

Вкладка программного блока **Service** (Рис. 5) выполнена в виде графического стенда, показывающего упрощенную принципиальную схему прибора. С помощью элементов управления, расположенных на этой вкладке, можно управлять его отдельными модулями–ЦАП, АЦП, твердотельным реле.

Элементы управления:

- поле VISA resource name позволяет выбрать порт, к которому подключен прибор;
- четыре поля ОUTA, ОUTB, ОUTC, ОUTD задают значения регистров каналов ЦАП;
- кнопка OUT управляет подключением выхода ИТУН к измерительным клеммам;
- выпадающий список **MUX** позволяет выбрать конфигурацию аналогового коммутатора АЦП;
- выпадающий список **IDAC** позволяет выбрать конфигурацию встроенных источников тока АЦП;
- кнопки IDAC1, IDAC2 управляют подключением встроенных источников тока АЦП к входу AIN2;
- выпадающий список GAIN позволяет установить коэффициент усиления масштабного усилителя АЦП.

Элементы идикации:

- индикатор Connect загорается зеленым цветом после приема символа приглашения «>»;
- индикатор кнопки OUT загорается зеленым цветом при подключении выхода ИТУН к измерительным клеммам;
- индикаторы AINO, AIN1, AIN2, AIN3 загораются зеленым цветом в зависимости от конфигурации аналогового коммутатора АЦП;
- индикаторы кнопок IDAC1, IDAC2 загораются зеленым цветом при подключении встроенных источников тока АЦП к входу AIN2;
- цифровые индикаторы *HEX*, *mV*, Gain отображают текущие значения отсчета АЦП в шестнадцатеричном формате, измеренного напряжения в mV и коэффициент усиления масштабного усилителя АЦП, при котором было осуществлено аналого-цифровое преобразование;
- цифровые индикаторы R0, R1, R2, R3 отображают текущее состояние регистров конфигурации АЦП в шестнадцатеричном формате;
- развертка U, mV отображает в виде графика изменение значения измеренного напряжения от времени.

Цикл выполнения программного блока Service:

- опрашиваются все элементы управления;
 - при изменении значений или состояния элементов управления модулями формируются и передаются в прибор соответствующие команды и параметры.
- запрашиваются, принимаются от прибора и отображаются:
 - о результат аналого-цифрового преобразования;
 - о значения регистров конфигурации АЦП.
- выполнение программного блока Service останавливается при условиях:
 - о нажата кнопка EXIT ;

о активирована другая вкладка на виртуальной лицевой панели прибора.

Рис. 5. Вкладка программного блока Service.

3.4 Алгоритм работы программного блока Camera

На вкладке **Camera** (Рис. 6) расположены три элемента управления и графическое окно.

В графическое окно в реальном масштабе времени (с небольшой задержкой) выводится изображение, передаваемой USB-камерой.

Поля Path и File заполняются автоматически после сохранения результатов измерений, выполненных в программном блоке VAC. Сохранение графического файла с расширением .png происходит после нажатия на экранную кнопку Снимок.

Работа программного блока Camera основана на использовании библиотеки libvlc.dll. Эта библиотека устанавливается на компьютер вместе с приложением VLC media player. Гарантирована корректная работа с приложением VLC media player версии 3.0.11. Работа с более ранними и более поздними версиями не проверялась.

Инициализация Веб-камеры осуществляется при запуске ППО в виртуальном приборе VLC-start.vi. Параметры инициализации заданы текстовыми константами для конкретной USB-камеры – видеоэндоскоп iCartool IC-V99:

- dshow-vdev=USB2.0 PC CAMERA
- dshow-size=640

Рис. 6 Вкладка программного блока Camera