Скважинный прибор для измерения диэлектрических характеристик пластового флюида. Программное обеспечение.

Д.А. Коновалов, н.с. лаб. ФПС КФТИ ФИЦ КазНЦ РАН

1. Специальное программное обеспечение

Специальное программное обеспечение (СПО) предназначено для прошивки микроконтроллера STM32F373.

СПО представлено исходным кодом на языке высокого уровня С, созданным в среде IDE µVision V5 и предназначенного для формирования исполнимого кода (прошивки) микроконтроллера STM32F373.

Загружать СПО в микроконтроллер можно средствами IDE µVision V5 или с использованием программы «STM32 ST-Link Utility».

СПО предназначено для:

- управления проведением измерений;
- контроля рабочего состояния прибора;
- первичной цифровой обработки данных измерений в реальном режиме времени;
- обеспечения передачи данных по интерфейсу RS-485 в головное устройство.

1.1. Логическая структура СПО

Структурно СПО состоит из процедур инициализации и конфигурации периферии микроконтроллера (GPIO, ADC, SDADC, USART) и синтезатора частоты, выполняемых однократно при запуске СПО, главного рабочего цикла, вызывающего по мере необходимости рабочие процедуры (обмен по протоколу Modbus, опрос каналов, цифровая обработка) и процедуры приёма данных по интерфейсу RS-485, работающей в фоновом режиме по прерыванию.

1.2. Алгоритм исполнения СПО

При появлении питания запускается исполнение СПО микроконтроллера. При этом происходит выполнение следующих процедур:

- инициализация задающего тактового генератора микроконтроллера;
- инициализация внутренних переменных и таблиц;
- инициализация портов ввода/вывода;
- инициализация интерфейса USART;
- инициализация АЦП и СДАЦП;
- калибровка АЦП и СДАЦП;
- инициализация синтезатора частоты AD9851;
- настройка интерфейса RS-485;
- считывание калибровочных регистров встроенного датчика температуры.

После этого происходит переход в рабочий цикл. В рабочем цикле проверяется значение регистра управления режимом измерения. Если значение регистра равно 1 или 2 происходит вызов процедуры опроса всех каналов АЦП и СДАЦП, цифровая обработка полученных данных и заполнение таблицы регистров данных. Далее проверяется признак приёма команд по протоколу Modbus-RTU. Если команда поступила, то вызывается процедура интерпретатора команд Modbus-RTU, выполняющая, в зависимости от полученной команды, соответствующие манипуляции с таблицами регистров и формирующей ответный пакет. Если поступившая команда модифицировала регистры управления, то в зависимости от их значений происходит одно из действий:

- Синтезатор частоты включается и настраивается на генерацию соответствующей частоты.
- Синтезатор частоты выключается.
- Происходит запись в энергонезависимую память микроконтроллера таблицы калибровочных параметров, загруженной ранее в соответствующие регистры хранения и задания параметров. На время записи все прерывания запрещаются, а приём данных по интерфейсу RS-485 приостанавливается. Необходимость в такой записи возникает только во время наладки. В режиме штатного функционирования прибора эта команда не используется.

2. Прикладное программное обеспечение

Прикладное программное обеспечение (ППО) запускается на головном устройстве – рабочей станции, работающей под управлением операционной системы Windows.

ППО предназначено для реализации функций:

- управления и контроля состояния прибора;
- сбора, окончательной обработки, визуализации и сохранения результатов измерения прибором.

ППО реализуется как программы на графическом языке программирования «G» фирмы National Instruments. Для работы программ необходимо наличие рабочей станции с установленной на ней средой для выполнения кода LabVIEW 2012 SP1 Runtime.

ППО представлено файлами графического языка программирования «G».

2.1. Логическая структура ППО

2.1.1. MB-server-6.vi

Структурно ППО MB-server-6.vi состоит из трех крупных блоков, оформленных на виртуальной лицевой панели прибора в виде отдельных вкладок, имеющих интуитивно понятный графический интерфейс:

- Work измерение ε, σ и температуры;
- **FTable** работа с таблицей калибровочных параметров чтение, загрузка, запись.
- **Debug** полный доступ ко всем ресурсам прибора.

2.1.2. Спектр PtP AD9851.vi

Структурно это очень простая программа – снимает частотную зависимость GAIN и PHASE в отсчетах АЦП и сохраняет результат в текстовый табличный файл.

2.1.3. Просмотр результатов PtP.vi

Простая программа – по выбору оператора загружает один или несколько текстовых табличных файлов, созданных ППО Спектр PtP AD9851.vi и выводит зависимости в виде графиков.

2.2. Алгоритм исполнения ППО

2.2.1. MB-server-6.vi

Перед запуском программы на исполнение необходимо на служебной вкладке **Service** (Рис. 1) в поле VISA resource name выбрать из списка виртуальный последовательный порт, соответствующий интерфейсу RS-485, к которому подключен прибор:

Рис. 1. Вкладка Service окна программы «MB-server-6.vi».

После запуска программы происходит инициализация графического интерфейса и последовательного порта для связи с прибором. Далее управление передается программному блоку *Work* (Рис. 3), который посылает в прибор команду на включение режима 1 (измерение є и о), активирует вкладку **Work** (Рис. 2) и в цикле ожидает нажатия экранной кнопки **READ**. При нажатии на кнопку **READ** производится чтение регистров данных (Input Register) прибора с накоплением и последующим усреднением. Результат выводится в соответствующие индикаторы. Зеленый индикатор **ОК** загорается в случае успешного выполнения операции чтения.

Work	FTable	Debug	Service	EXIT					
									_
		3			σ		Temp	erature	
		0.0	00		0.0000		0	ОК	
		Накоплені	ий <u>()</u> 1		READ				
						_			

Рис. 2. Вкладка Work окна программы «MB-server-6.vi».

При активации вкладки **FTable** (Рис. 4) управление передается программному блоку *FTable* (Рис. 5), который в цикле опрашивает состояние экранных кнопок **READ**, Write To Memory и Write To EEPROM. При нажатии на одну из этих кнопок в прибор посылается соответствующая команда на чтение или запись регистров. После нажатия на кнопку **READ** поле **Table** заполняется прочитанными значениями параметров. Значения параметров можно отредактировать и загрузить в прибор, нажав на кнопку **Write To Memory**. Для того чтобы записать загруженные параметры в энергонезависимую память прибора нужно нажать на кнопку **Write To EEPROM**.

Work FTable Debug Service	EXIT		
Table C1 e-13 Co e-13 Cs e-13 Rin OM <u>F κΓμ</u> <u>κADC *1000</u>			
Exception Code		Exception Code 2	Exception Code 3
READ		Write to Memory	Write to EEPROM

Рис. 4. Вкладка FTable окна программы «MB-server-6.vi».

Рис. 5. Программный блок FTable программы «MB-server-6.vi».

Для того чтобы получить полный доступ ко всем ресурсам прибора, доступным по протоколу Modbus, нужно активировать вкладку **Debug** (Puc.6). При этом управление передается программному блоку *Debug* (Puc. 7), который в цикле опрашивает состояние экранных кнопок **Write**, **Read** группы <u>Peructpus хранения</u> и **Read** группы <u>Peructpus ввода</u>. При нажатии на одну из этих кнопок в прибор посылается соответствующая команда на чтение или запись регистров. Подробное описание реализации протокола Modbus, адреса и назначение регистров прибора приведены в разделе «<u>Команды интерфейса RS-485</u> (<u>MODBUS-RTU</u>)».

Рис. 6. Вкладка Debug окна программы «MB-server-6.vi».

Рис. 7. Программный блок Debug программы «MB-server-6.vi».

Вкладка **Exit** содержит только одну экранную кнопку **EXIT**. Завершать программу всегда нужно именно этой кнопкой, так как бесконечный цикл прерывается только по этому условию. После прерывания бесконечного цикла в прибор посылается команда на прекращение измерений и осуществляется освобождение ресурсов виртуального последовательного порта.

2.2.2. Спектр PtP AD9851.vi

Перед запуском программы на исполнение в поле VISA resource name (Рис. 8) необходимо выбрать из списка виртуальный последовательный порт, соответствующий интерфейсу RS-485, к которому подключен прибор, а также ввести значения в поля Count (количество накоплений в каждой точке), StartFreq (kHz) (начальная частота) и StopFreq (kHz) (конечная частота).

Рис. 8. Окно программы «Спектр PtP AD9851.vi».

После запуска программы происходит инициализация последовательного порта для связи с прибором (ВП STM32_INIT_MBUS). Рутинные операции по обмену данными с прибором для получения спектра выполняет ВП СПЕКТР_АD9851. После завершения процесса получения частотной зависимости результат отображается на графиках, а также активируется диалоговое окно с тремя кнопками NEXT, WRITE, EXIT. Кнопка NETX запускает новый измерительный цикл. При нажатии на кнопку WRITE результаты измерений записываются в текстовый табличный файл и программа, послав в прибор команду на прекращение измерений и освободив ресурсы виртуального последовательного порта, завершается.

2.2.3. Просмотр результатов PtP.vi

Сразу после запуска программы (Рис. 10) начинается цикл While и активируется диалоговое окно выбора файла с результатами измерений (Рис. 11), созданного в программе «Спектр PtP AD9851.vi»

Рис. 10. Программа «Просмотр результатов PtP.vi».

После выбора файла происходит чтение таблицы в числовой многомерный массив и построение двух графиков частотных зависимостей. Цикл завершается экранным диалогом с двумя кнопками NEXT и EXIT. Если нажата кнопка NEXT, то последует выбор и чтение нового файла. Графики дополнятся новой зависимостью. Выбор EXIT завершает программу (Рис. 12). Теперь каждый график можно рассмотреть более подробно, используя встроенные средства работы с графиками (масштабирование, курсорные измерения и т.п.).

1.0E+8

1.0E+7

Frequece, Hz

14500.0-

10500.0-1.0E+6

pp 14000.0-13500.0-12500.0-12500.0-11500.0-11500.0-11000.0-